High resolution - hyperspectral maps as part of the data time series produced by MONALISA project. 16 Hyperspectral bands and Orthomosaic and Digital Surface models
collection, UAV, Multispectral, Suface models, UAV octocopter, Land use, Land cover
CC-BY-4.0
Eurac Research - Institute for Earth Observation |
bartolomeo.ventura@eurac.edu |
Viale Druso, 1 / Drususallee 1, Eurac Research, Bolzano, Autonomous Province of Bolzano, 39100, Italy |
2019-09-04T00:00:00Z 2019-09-04T00:00:00Z
WGS-84 (32632:EPSG)
Grid
mapDigital
Imagery base maps earth cover
install.packages("openeo")
library(openeo)
# login ----
host = "https://openeo.eurac.edu"
con = connect(host = host)
login()
# check login ---
con$isConnected()
con$isLoggedIn()
describe_account()
# load collection - save result ----
p = processes()
data = p$load_collection(id = "UAV_Transparent_Reflectance_20190904",
spatial_extent = list(west = 11.799453,
east = 11.803874,
south = 46.635872,
north = 46.637337),
temporal_extent = list("2019-09-04T00:00:00Z", "2019-09-04T00:00:00Z"))
result = p$save_result(data = data, format="netCDF")
# download results ----
# either directly (suitable for smaller requests)
compute_result(result,
format = "netCDF",
output_file = "UAV_Transparent_Reflectance_20190904.nc",
con = con)
# or start a batch job (suitable for larger requests)
job_id = create_job(graph = result,
title = "UAV_Transparent_Reflectance_20190904",
description = "UAV_Transparent_Reflectance_20190904",
format = "netCDF")
start_job(job = job_id)
result_list = list_results(job = job_id)
download_results(job = job_id, folder = ".")
#pip install openeo
import openeo
# login ----
euracHost = "https://openeo.eurac.edu"
conn = openeo.connect(euracHost).authenticate_oidc(client_id="openEO_PKCE")
# load collection - save result ----
data = conn.load_collection("UAV_Transparent_Reflectance_20190904",spatial_extent={'west':11.799453,'east':11.803874,'south':46.635872,'north':46.637337},temporal_extent=["2019-09-04T00:00:00Z", "2019-09-04T00:00:00Z"])
result = data.save_result(format="NetCDF")
# download results ----
# either directly (suitable for smaller requests, closes the connection after 2 minutes)
result.download("UAV_Transparent_Reflectance_20190904.nc",format="netCDF")
# or start a batch job (suitable for larger requests, e.g. when .download() timeouts)
job = result.create_job(title = "UAV_Transparent_Reflectance_20190904",description = "UAV_Transparent_Reflectance_20190904",out_format = "netCDF")
jobId = job.job_id
job.start_job()
jobResults = job.get_results()
jobResults.download_files('.')
Name | Description | Link | Date published | Category |
---|---|---|---|---|
openEO for ADO project | Tutorial and snippets on how to use openEO in the ADO project | Link | Sept. 15, 2021 | OpenEO |
EDP video tutorial | Presentation of edp-platform and tutorial for data analysis and processing | Link | Sept. 15, 2021 | OpenEO |
Official OpenEO documentation and project site | Official Documentation provided in the project web site for a deeper overview and introduction. | Link | June 10, 2021 | OpenEO |
OpenEO doc | Documentation for OpenEO API | Link | June 9, 2021 | OpenEO |
Eurac - OpenEO | openEO endpoint | Link | April 28, 2021 | OpenEO |
MOOC Cubes and Clouds | Free Online Course teaching the concepts of data cubes, cloud platforms and open science in geospatial and EO. | Link | March 8, 2024 | OpenEO, STAC |