The Vegetation Condition Index (VCI) is based on the Normalized Difference Vegetation Index (NDVI) derived from MODIS satellite data. The NDVI is based on 8 day maximum value composite MOD09Q1 (v006) reflectance products. The spatial resolution is 231 m. The NDVI is masked to the highest quality standards using the provided quality layers. Missing pixel values in the time series are linearly interpolated. Non-vegetated areas are masked using the most recent Corine Land Cover product version for the according year. The final product is regridded to the LAEA Projection (EPSG:3035). The VCI is calculated using the formula VCIi = (NDVIi - NDVImin,i)/(NDVImax,i - NDVImin,i) * 100. The VCI expresses anomalies of the NDVI. The data is provided as 8 day measures. The time series is starting from 2001. The VCI values range from 0-100, whereas high values correspond to healthy vegetation and low values indicate stressed vegetation.
https://doi.org/10.48784/16367c6a-534a-11ec-b0a3-02000a08f41d
Zellner, P., & Castelli, M. (2022). Vegetation Condition Index - 231 m 8 days (Version 1.0) [Data set]. Eurac Research. https://doi.org/10.48784/16367c6a-534a-11ec-b0a3-02000a08f41d
collection, vegetation condition index, vci, modis, ADO project, ADO, Terra, Land use, Land cover
CC BY 4.0
Eurac Research - Institute for Earth Observation |
bartolomeo.ventura@eurac.edu |
Viale Druso, 1 / Drususallee 1, Eurac Research, Bolzano, Autonomous Province of Bolzano, 39100, Italy |
2001-01-01T00:00:00Z 2022-08-29T00:00:00Z
WGS-84 (3035:EPSG)
Grid
mapDigital
Imagery base maps earth cover
install.packages("openeo")
library(openeo)
# login ----
host = "https://openeo.eurac.edu"
con = connect(host = host)
login()
# check login ---
con$isConnected()
con$isLoggedIn()
describe_account()
# load collection - save result ----
p = processes()
data = p$load_collection(id = "ADO_VCI_MODIS_231m_3035",
spatial_extent = list(west = 3.995373,
east = 17.523924,
south = 42.873494,
north = 50.326362),
temporal_extent = list("2001-01-01T00:00:00Z", "2022-08-29T00:00:00Z"))
result = p$save_result(data = data, format="netCDF")
# download results ----
# either directly (suitable for smaller requests)
compute_result(result,
format = "netCDF",
output_file = "ADO_VCI_MODIS_231m_3035.nc",
con = con)
# or start a batch job (suitable for larger requests)
job_id = create_job(graph = result,
title = "ADO_VCI_MODIS_231m_3035",
description = "ADO_VCI_MODIS_231m_3035",
format = "netCDF")
start_job(job = job_id)
result_list = list_results(job = job_id)
download_results(job = job_id, folder = ".")
#pip install openeo
import openeo
# login ----
euracHost = "https://openeo.eurac.edu"
conn = openeo.connect(euracHost).authenticate_oidc(client_id="openEO_PKCE")
# load collection - save result ----
data = conn.load_collection("ADO_VCI_MODIS_231m_3035",spatial_extent={'west':3.995373,'east':17.523924,'south':42.873494,'north':50.326362},temporal_extent=["2001-01-01T00:00:00Z", "2022-08-29T00:00:00Z"])
result = data.save_result(format="NetCDF")
# download results ----
# either directly (suitable for smaller requests, closes the connection after 2 minutes)
result.download("ADO_VCI_MODIS_231m_3035.nc",format="netCDF")
# or start a batch job (suitable for larger requests, e.g. when .download() timeouts)
job = result.create_job(title = "ADO_VCI_MODIS_231m_3035",description = "ADO_VCI_MODIS_231m_3035",out_format = "netCDF")
jobId = job.job_id
job.start_job()
jobResults = job.get_results()
jobResults.download_files('.')
Name | Description | Link | Date published | Category |
---|---|---|---|---|
openEO for ADO project | Tutorial and snippets on how to use openEO in the ADO project | Link | Sept. 15, 2021 | OpenEO |
EDP video tutorial | Presentation of edp-platform and tutorial for data analysis and processing | Link | Sept. 15, 2021 | OpenEO |
Official OpenEO documentation and project site | Official Documentation provided in the project web site for a deeper overview and introduction. | Link | June 10, 2021 | OpenEO |
OpenEO doc | Documentation for OpenEO API | Link | June 9, 2021 | OpenEO |
Eurac - OpenEO | openEO endpoint | Link | April 28, 2021 | OpenEO |
MOOC Cubes and Clouds | Free Online Course teaching the concepts of data cubes, cloud platforms and open science in geospatial and EO. | Link | March 8, 2024 | OpenEO, STAC |