Environmental Data Platform


Factor soil texture

Go to full metadata Linkset {json} Linked data {json}


USDA soil textural classes derived from clay, silt and sand maps. - Resolution: 500m - Geographical Coverage: Alpine space - Input data: LUCAS 2009 Topsoil- Model: Multivariate Additive Regression Splines (MARS) - Year: 2015- Soil texture is classified into 12 classes: 1: Clay, 2: Silty-Clay, 3: Silty Clay-Loam, 4: Sandy Clay, 5: Sandy Clay-Loam, 6: Clay-Loam, 7: Silt, 8: Silt-Loam, 9: Loam, 10: Sand, 11: Loam Sand, 12: Sandy Loam. For further information visit the website European soil data centre (ESDAC).

collection, soil texture, soil textural classes, ESDAC, LUCAS, topsoil, ADO project, ADO, N/A, Land use, Land cover

CC BY 4.0

Eurac Research - Institute for Earth Observation
bartolomeo.ventura@eurac.edu
Viale Druso, 1 / Drususallee 1, Eurac Research, Bolzano, Autonomous Province of Bolzano, 39100, Italy


WGS-84 (3035:EPSG)

Grid

mapDigital

Imagery base maps earth cover


Snippet code
Copy to clipboard

install.packages("openeo")
library(openeo)

# login ----
host = "https://openeo.eurac.edu"
con = connect(host = host)
login()

# check login ---
con$isConnected()
con$isLoggedIn()
describe_account()

# load collection - save result ----
p = processes()
data = p$load_collection(id = "ADO_factor_soil_texture", 
                                             spatial_extent = list(west = 4.008928,
                                                                                 east = 17.507985,
                                                                                 south = 42.885755,
                                                                                 north = 50.317601),
                                             temporal_extent = list("STARTTIME", "ENDTIME"))
result = p$save_result(data = data, format="netCDF")

# download results ----
# either directly (suitable for smaller requests)
compute_result(result,
                             format = "netCDF",
                             output_file = "ADO_factor_soil_texture.nc", 
                             con = con)

# or start a batch job (suitable for larger requests)
job_id = create_job(graph = result,
                                   title = "ADO_factor_soil_texture",
                                   description = "ADO_factor_soil_texture",
                                   format = "netCDF")
start_job(job = job_id)
result_list = list_results(job = job_id)
download_results(job = job_id, folder = ".")
Copy to clipboard

#pip install openeo
import openeo

# login ----
euracHost        = "https://openeo.eurac.edu"
conn = openeo.connect(euracHost).authenticate_oidc(client_id="openEO_PKCE")

# load collection - save result ----
data = conn.load_collection("ADO_factor_soil_texture",spatial_extent={'west':4.008928,'east':17.507985,'south':42.885755,'north':50.317601},temporal_extent=["STARTTIME", "ENDTIME"])

result = data.save_result(format="NetCDF")

# download results ----
# either directly (suitable for smaller requests, closes the connection after 2 minutes)
result.download("ADO_factor_soil_texture.nc",format="netCDF")

# or start a batch job (suitable for larger requests, e.g. when .download() timeouts)

job = result.create_job(title = "ADO_factor_soil_texture",description = "ADO_factor_soil_texture",out_format = "netCDF")
jobId = job.job_id
job.start_job()

jobResults = job.get_results()
jobResults.download_files('.')

Related docs
Name Description Link Date published Category
openEO for ADO project Tutorial and snippets on how to use openEO in the ADO project Link Sept. 15, 2021 OpenEO
EDP video tutorial Presentation of edp-platform and tutorial for data analysis and processing Link Sept. 15, 2021 OpenEO
Official OpenEO documentation and project site Official Documentation provided in the project web site for a deeper overview and introduction. Link June 10, 2021 OpenEO
OpenEO doc Documentation for OpenEO API Link June 9, 2021 OpenEO
Eurac - OpenEO openEO endpoint Link April 28, 2021 OpenEO
MOOC Cubes and Clouds Free Online Course teaching the concepts of data cubes, cloud platforms and open science in geospatial and EO. Link March 8, 2024 OpenEO, STAC