Environmental Data Platform


Snow cover phenology

Go to full metadata Linkset {json} Linked data {json}


The snow cover phenology dataset was generated by exploiting the snow product MOD10A1.061 and contains the following variables: first snow day (FSD), last snow day (LSD), yearly averaged snow cover area (SCA), snow cover duration (SCD).

https://doi.org/10.1016/j.dib.2024.110860

Notarnicola, C. Snow cover phenology dataset over global mountain regions from 2000 to 2023. Elsevier, Volume 56, October 2024, 110860

Collection, Snow cover phenology, FSD, LSD, SCA, SCD, MODIS, MODIS-Terra, Hydrography

CC BY 4.0 NC

eurac research - Institute for Earth Observation
bartolomeo.ventura@eurac.edu
Viale Druso, 1 / Drususallee 1, eurac research, Bolzano, Autonomous Province of Bolzano, 39100, Italy


2000-10-01T00:00:00Z 2023-09-30T00:00:00Z

4326 (4326:EPSG)

Grid

Climatology, meteorology, atmosphere


Snippet code
Copy to clipboard

##### ----Explore and download STAC data with Python ----- #####

from pystac_client import Client

## Read the example catalog
URL = 'https://stac.eurac.edu/'
catalog = Client.open(URL)

## List the Collections in the given Catalog
stac_collections = list(catalog.get_collections())
print(f"Number of collections: {len(stac_collections)}")

## Print collection IDs
print("Collections IDs:")
for collection in stac_collections:
    print(f"- {collection.id}")
print("-------------------------")

## Retrieve a specific collection
collection = catalog.get_collection("FSD")

## Search for items in the collection
collection_items = list(catalog.search(collections=['FSD'], max_items=10).items())
print(collection_items)

## Retrieve a list of the first 10 items belonging to a specific collection
item = collection.get_item("FSD2000-1")
#print(list(item.assets.items())[0:10])

##Print the band name and the href of a specific item retrieved from the previous list
print(item.assets["FSD"].title)
print(item.assets["FSD"].href)

## Print Item’s assets through the assets attribute, which is a dictionary
for asset_key in item.assets:
    asset = item.assets[asset_key]
    print("{}: {} ({})".format(asset_key, asset.href, asset.media_type))

## ------------- DONWLOAD COG files from a specific collection ------- ####
from pystac_client import Client
import requests

## Read the example catalog
URL = 'https://stac.eurac.edu/'
catalog = Client.open(URL)

## List the Collections in the given Catalog
stac_collections = list(catalog.get_collections())
# print(f"Number of collections: {len(stac_collections)}")

## Print collection IDs
print("Collections IDs:")
for collection in stac_collections:
	print(f"- {collection.id}")
print("-------------------------")

## Retrieve a specific collection
collection = catalog.get_collection("SCA")

## Search for items in the collection
collection_items = list(catalog.search(collections=['SCA'], max_items=10).items())
print(collection_items)

url_basepath = "https://eurac-eo.s3-eu-west-1.amazonaws.com/"
collection_url = url_basepath + "FSD" + "/"
print(collection_url)
for item_id in collection_items:
	# item = item.assets[asset_key]
	print(item_id.id)
	cog_file = str(item_id.id + '.tif')
	url = collection_url + cog_file
	response = requests.get(url)
	with open(cog_file, "wb") as f:
		f.write(response.content)

Related docs
Name Description Link Date published Category
MOOC Cubes and Clouds Free Online Course teaching the concepts of data cubes, cloud platforms and open science in geospatial and EO. Link March 8, 2024 OpenEO, STAC
STAC guidelines Documentation to browse and download items of the STAC catalog Link Feb. 22, 2024 STAC